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Abstract We correct a sign error in the paper [3] by the second and third
authors, noted by the first author. This sign error in the definition of the
Calderón operator has no effect on the theory presented in [3], but it does
affect the implementation of the proposed numerical method.
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1 Introduction

In [3] we present a time-domain boundary integral formulation of an interior–
exterior coupling of Maxwell’s equations, with the help of a Calderón operator
whose coercivity plays a fundamental role in proving the well-posedness of the
proposed time-domain boundary integral equations and the stability of the
numerical discretization. The definition of the Calderón operator contains,
however, a sign error, which is corrected here. The effects of this sign error are
restricted only to Section 2.3 and formula (3.1) in [3], but otherwise all the re-
sults of the paper hold unchanged. On the other hand, for the implementation
of the method the correct sign is crucial.
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2 The time-harmonic Maxwell’s equation and its boundary integral
operators

2.1 Time-harmonic Maxwell’s equation and trace operators

Let us recall the time-harmonic Maxwell’s equation, obtained as the Laplace
transform of the second order Maxwell’s equation (with constant permeability
µ and permittivity ε):

εµs2u+ curl curlu = 0 in R3 \ Γ, (2.1)

where Γ is the boundary of a bounded piecewise smooth domain (or a finite
collection of such domains) Ω ⊂ R3, not necessarily convex, with exterior nor-
mal ν. The complex parameter s of positive real part is the Laplace transform
variable.

In the following we assume appropriate physical units such that

εµ = 1, (2.2)

that is, the wave speed is set to one. In the original work [3], the dependence
on εµ is unreliable and one should assume (2.2), which just corresponds to a
rescaling of time t→ t/

√
εµ or of frequency s→ s

√
εµ.

With the scaling (2.2), Eq. (2.1) becomes the time-harmonic Maxwell’s
equation curl curlu− κ2u = 0 as in [2] on setting s = −iκ.

Analogously to [2] the tangential and magnetic traces are defined by

γT v = v|Γ × ν, and γNv = (s−1 curl v)|Γ × ν,

respectively. The setting uses the following skew-hermitian pairing on L2(Γ ):

[γ w, γ v]Γ =

∫
Γ

(γ w × ν) · γ v dσ.

The complex conjugation of w was missing in the definition of the pairing in
[3] although it was actually used, e.g. in formula (2.3) and Lemma 3.1 of [3].

2.2 Boundary integral operators

The functional analytic setting of [3, Section 2.3] follows Buffa and Hiptmair
[2]. The latter paper defines boundary integral operators in the Fourier do-
main, whereas [3] uses the Laplace domain (which fits better with convolution
quadratures, cf. [3, Section 4]). The sign error occurred while translating the
definition of the boundary integral operators and related notions from the
Fourier to the Laplace domain. Below we present the correct Laplace domain
formulation.
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Exactly as in [3], following [2] and [1], the (electric) single layer potential
and double layer potential for (2.1) are given, for x ∈ R3 \ Γ , as

S(s)ϕ(x) = − s
∫
Γ

G(s, x− y)ϕ(y)dy + s−1∇
∫
Γ

G(s, x− y) divΓ ϕ(y)dy,

D(s)ψ(x) = curl

∫
Γ

G(s, x− y)ψ(y)dy,

with the fundamental solution G(s, x) = e−s|x|

4π|x| for x ∈ R3 \ {0} and Re s > 0.

The solution of (2.1) is then given by the correct representation formula:

u = −S(s)ϕ+D(s)ψ, x ∈ R3 \ Γ. (2.3)

In [3] the first negative sign was erroneously missing.

The boundary densities in (2.3) are given by ϕ = [[γNu]] = [[γT (s−1 curlu)]]
and ψ = [[γTu]], where [[γv]] = γ−v − γ+v denotes the jump in the boundary
traces of the interior domain Ω− and the exterior domain Ω+, while {{γv}} =
1
2 (γ−v + γ+v) denotes the average. We note that there is a sign difference in
the jump when comparing [2] and [3].

Due to the negative sign in the representation formula the correct jump
relations are

[[γN ◦ S(s)]] = − Id, [[γN ◦ D(s)]] = 0,

[[γT ◦ S(s)]] = 0, [[γT ◦ D(s)]] = Id.

The boundary integral operators V and K then satisfy the relations

V (s) = {{γT ◦ S(s)}} = {{γN ◦ D(s)}},
K(s) = {{γT ◦ D(s)}} = −{{γN ◦ S(s)}}.

(2.4)

In [3] the negative sign in the last term of the second line was missing. Natu-
rally, this sign difference does not influence the boundedness of these operators,
see [3, Lemma 2.3], based on [2, Section 5] and [1].

The negative sign in (2.4) changes the signs in the expression for the av-
erages of the traces using the operators V and K, see [3, equation (2.6)]. The
correct relations are:

{{γTu}} = − {{γTS(s)ϕ}}+ {{γTD(s)ψ}}
= − V (s)ϕ+K(s)ψ, and

{{γNu}} = − {{γNS(s)ϕ}}+ {{γND(s)ψ}}
= K(s)ϕ+ V (s)ψ.

(2.5)

The negative sign in the first equation was missing in [3, equation (2.6)].
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3 Coercivity of a Calderón operator for the time-harmonic
Maxwell’s equation

Due to the above formulas, the correct Calderón operator is given by

B(s) = µ−1
(
−V (s) K(s)
−K(s) −V (s)

)
, (3.1)

with a correct negative sign in the left upper block of B(s) as opposed to [3,
equation (3.1)].

Within the above setting the first equality in the proof of Lemma 3.1 in
[3] stays true: For given ϕ,ψ ∈ HΓ , we define u ∈ H(curl,R3 \ Γ ) by the
representation formula (2.3). We can then express ϕ and ψ, see above, by
ϕ = [[γNu]] = [[γT (s−1 curlu)]] and ψ = [[γTu]]. Then, (2.5) and (3.1) yield

B(s)

(
ϕ

ψ

)
= µ−1

(
{{γTu}}
−{{γNu}}

)
. (3.2)

Remark 3.1 When the scaling (2.2) is not imposed, then the corresponding
equation is obtained by replacing the argument s with s

√
εµ in B(s) and

in γNu = γT (s−1 curlu). We note, however, that with this substitution, the
single- and double-layer operators are then scaled differently from those defined
in [1,3].

It is of crucial importance that in the above setting the Calderón operator
still satisfies the following coercivity result, with the proof given as in [3].

Lemma 3.1 ([3, Lemma 3.1]) There exists β > 0 such that the Calderón
operator (3.1) satisfies

Re

[(
ϕ

ψ

)
, B(s)

(
ϕ

ψ

)]
Γ

≥ β m(s)
(
‖s−1ϕ‖2HΓ + ‖s−1ψ‖2HΓ

)
for Re s > 0 and for all ϕ,ψ ∈ HΓ , with m(s) = min{1, |s|2}Re s.

Thanks to this coercivity estimate for the Calderón operator B defined
above in (3.1), all the stability and convergence results of [3] remain valid,
since the proofs depend on this coercivity result and not on the particular
form of the Calderón operator.
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