Codes for all publications are available via GitLab, or upon request.

My profiles on:

## Preprints

- B. Kovács. Numerical surgery for mean curvature flow of surfaces. October 2022.
- S. Bartels, B. Kovács, and Z. Wang. Error analysis for the numerical approximation of the harmonic map heat flow with nodal constraints. August 2022.
- H. Garcke, B. Kovács, and D. Trautwein. Viscoelastic Cahn–Hilliard models for tumour growth. April 2022, revised September 2022. To appear in
*M3AS*, 2022. - P. Csomós, B. Farkas, and B. Kovács. Error estimates for a splitting integrator for abstract semilinear boundary coupled systems. December 2021, revised April, October, and November 2022. To appear in
*IMA Journal of Numerical Analysis*, 2022. - R. Altmann, B. Kovács, and C. Zimmer. Bulk–surface Lie splitting for parabolic problems with dynamic boundary conditions. August 2021, revised January 2022. To appear in
*IMA Journal of Numerical Analysis*, 2022. - T. Binz and B. Kovács. A convergent finite element algorithm for mean curvature flow in arbitrary codimension. July 2021, revised February, July 2022.
- B. Kovács and B. Li. Maximal regularity of backward difference time discretization for evolving surface PDEs and its application to nonlinear problems. June 2021, revised January 2022. To appear in
*IMA Journal of Numerical Analysis*, 2022. - J. Bohn, M. Feischl, and B. Kovács. FEM–BEM coupling for Maxwell–Landau–Lifshitz–Gilbert equations via convolution quadrature: Weak form and numerical approximation. March 2020, revised May 2020, October 2021, September 2022. To appear in
*Computational Methods in Applied Mathematics*, 2022.

## Papers

- P. Harder and B. Kovács. Error estimates for the Cahn–Hilliard equation with dynamic boundary conditions.
*IMA Journal of Numerical Analysis*, 42(3):2589–2620, 2022. - T. Binz and B. Kovács. A convergent finite element algorithm for generalized mean curvature flows of closed surfaces.
*IMA Journal of Numerical Analysis*, 42(3):2545–2588, 2022. - C. M. Elliott, H. Garcke, and B. Kovács. Numerical analysis for the interaction of mean curvature flow and diffusion on closed surfaces.
*Numerische Mathematik*, 151(4):873–925, 2022. - C. A. Beschle and B. Kovács. Error estimates for generalised non-linear Cahn–Hilliard equations on evolving surfaces.
*Numerische Mathematik*, 151(1):1–48, 2022. - J. Nick, B. Kovács, and Ch. Lubich. Time-dependent electromagnetic scattering from thin layers.
*Numerische Mathematik*150(4):1123–1164 2022. - B. Kovács, B. Li, and Ch. Lubich. A convergent evolving finite element algorithm for Willmore flow of closed surfaces.
*Numerische Mathematik*, 149(4):595–643, 2021. - G. Akrivis, M. Feischl, B. Kovács, and Ch. Lubich. Higher-order linearly implicit full discretization of the Landau–Lifshitz–Gilbert equation.
*Mathematics of Computation*, 90(329):995–1038, 2021. - J. Nick, B. Kovács, and Ch. Lubich, Correction to: Stable and convergent fully discrete interior-exterior coupling of Maxwell's equations.
*Numerische Mathematik*, 147:997–1000, 2021. - D. Hipp and B. Kovács. Finite element error analysis of wave equations with dynamic boundary conditions: \(L^2\) estimates.
*IMA Journal of Numerical Analysis*, 41(1):683–728, 2021. - B. Kovács, B. Li, and Ch. Lubich. A convergent algorithm for forced mean curvature flow driven by diffusion on the surface.
*Interfaces and Free Boundaries*, 22(4):443–464, 2020. - J. Karátson, B. Kovács, and S. Korotov. Discrete maximum principles for nonlinear elliptic finite element problems on surfaces with boundary.
*IMA Journal of Numerical Analysis*, 40(2):1241–1265, 2020. - B. Kovács, B. Li, and Ch. Lubich. A convergent evolving finite element algorithm for mean curvature flow of closed surfaces.
*Numerische Mathematik*, 143(4):797–853, 2019. - B. Kovács. Computing arbitrary Lagrangian Eulerian maps for evolving surfaces.
*NMPDE*, 35(3):1093–1112, 2019. - B. Kovács and Ch. Lubich. Linearly implicit full discretization of surface evolution.
*Numerische Mathematik*, 140(1):121–152, 2018. - B. Kovács and C.A. Power Guerra. Maximum norm stability and error estimates for the evolving surface finite element method.
*NMPDE*, 34(2):518–554, 2018. - B. Kovács and C.A. Power Guerra. Higher-order time discretizations with ALE finite elements for parabolic problems on evolving surfaces.
*IMA Journal of Numerical Analysis*, 38(1):460–494, 2018. - B. Kovács. High-order evolving surface finite element method for parabolic problems on evolving surfaces.
*IMA Journal of Numerical Analysis*, 38(1):430–459, 2018. - B. Kovács and Ch. Lubich. Stability and convergence of time discretizations of quasi-linear evolution equations of Kato type.
*Numerische Mathematik*, 138(2):365–388, 2018. - B. Kovács, B. Li, Ch. Lubich, and C.A. Power Guerra. Convergence of finite elements on an evolving surface driven by diffusion on the surface.
*Numerische Mathematik*, 137(3):643–689, 2017. - B. Kovács and Ch. Lubich. Stable and convergent fully discrete interior–exterior coupling of Maxwell's equations.
*Numerische Mathematik*, 137(1):91–117, 2017. - B. Kovács and Ch. Lubich. Numerical analysis of parabolic problems with dynamic boundary conditions.
*IMA Journal of Numerical Analysis*, 37(1):1–39, 2017. - B. Kovács, B. Li, and Ch. Lubich. A-stable time discretizations preserve maximal parabolic regularity.
*SIAM Journal on Numerical Analysis*, 54(6):3600–3624, 2016. - J. Karátson and B. Kovács. A parallel numerical solution approach for nonlinear parabolic systems arising in air pollution transport problems.
In
*Mathematical Problems in Meteorological Modelling*, pages 57–70. Springer International Publishing, 2016. - B. Kovács and C.A. Power Guerra. Error analysis for full discretizations of quasilinear parabolic problems on evolving surfaces.
*NMPDE*, 32(4):1200–1231, 2016. - O. Axelsson, J. Karátson, and B. Kovács. Robust preconditioning estimates for convection-dominated elliptic problems via a streamline Poincaré–Friedrichs inequality.
*SIAM Journal on Numerical Analysis*, 52(6):2957– 2976, 2014. - B. Kovács. On the numerical performance of a sharp a posteriori error estimator for some nonlinear elliptic problems.
*Applications of Mathematics*, 59(5):489–508, 2014. - J. Karátson and B. Kovács. Variable preconditioning in complex Hilbert space and its application to the nonlinear Schrödinger equation.
*Computers Mathematics with Applications*, 65(3):449–459, 2013. - B. Kovács. A comparison of some efficient numerical methods for a nonlinear elliptic problem.
*Central European Journal of Mathematics*, 10(1):217–230, 2012.

## Theses

[T2] B. Kovács. Numerical analysis of partial differential equations on and of evolving surfaces. Habilitation thesis. University of Tübingen, Tübingen, Germany. December 2018.

[T1] B. Kovács. Efficient numerical methods for elliptic and parabolic partial differential equations. PhD thesis. ELTE Eötvös Loránd University, Budapest, Hungary. 2015.